Code No.: 21812

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.E. (Mech. Engg.: CBCS) I-Semester Main Examinations, January-2018

(Advanced Design & Manufacturing)

Mathematical Methods for Engineers

Time: 3 hours

Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q. No	Stem of the Question	M	L	CO	PO
	$Part-A (10 \times 2 = 20 Marks)$		1 11		
1.	Find the directional derivative of $\emptyset = x^2yz + 4xz^2$ at $(1,-2,1)$ in the direction of $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$.	2	1	1	10
2.	If $u\mathbf{F} = \nabla v$ where u and v are scalar fields and \mathbf{F} is a vector field, show that \mathbf{F} .curl $\mathbf{F} = 0$.	2	2	1	10
3.	Define Solenoidal and Irrotational vectors.	2	1	2	10
.	Express the relationship between the associated tensors \bar{A}^{ikl} and A_{pqr}	2	2	2	10
5.	Write the mathematical formula for Cramer's Rule.	2	1	3	10
5.	Briefly explain LU decomposition.	2	2	3	10
7.	Compute the Laplace transform of e^{4t} sin2t cost.	2	2	4	10
3.	Find the Laplace transform of sin at using basic definition.	2	1	4	10
Э.	Find the Fourier series of the function defined by $f(x) = \pi$, $-\pi \le x \le \pi$	2	2	5	10
10.	Find the Fourier series for the function defined by	2	2	5	10
	$f(x) = 0, -\pi \le x < 0$				
	$f(x) = \sin x, 0 \le x \le \pi$				
	Part-B (5 \times 8= 40 Marks)				
11. a)	Show that $\nabla \times (\nabla \times \bar{A}) = \nabla(\nabla \cdot \bar{A}) - \nabla^2 \bar{A}$	5	2	1	10
b)	Find the unit normal vector to $x^2 + y^2 + z^2 = 5$ at $(0,1,2)$	3	1	1	10
12. a)	Let A_{rst}^{pq} be a tensor. Find the rank of A_{rst}^{pq} when $p = t$ and $q = s$	5	2	2	10
b)	Using tensor notation show that $curl\ grad\ \varphi = 0$	3	3	2	5
13. a)	Solve the system of equations by Gauss-Seidal method for $x^{(1)}, y^{(1)}, z^{(1)}, w^{(1)}, x^{(2)}, y^{(2)}, z^{(2)}, w^{(2)}$ for the following system of equations $3.49x - 0.25y + 9.21z + 0.05w = 1.32$ $5.25x - 1.77y + 8.97z + 0.1w = 4.35$ $1.73x - 2.1y + 3.37z + 7.23w = 12.49$ $1.23x - 6.54y + 2.87z + 2.41w = 11.32$	5	4	3	5
	Superscripts indicate iterations.				
b)	Find a, b and c so that the linear system $x + 2y - 3z = a$ $2x + 3y + 3z = b$ $5x + 9y - 6z = c$ is consistent.	3	3	3	5

14. a)	Solve the initial value problem $y'' + 4y' + 3y = e^{-t}$, $y(0) = y'(0) = 1$ by using Laplace transforms.	5	3	4	5
b)	Find the inverse Laplace transforms of $\frac{4s+5}{(s-1)^2 (s+2)}$	3	2	4	10
15. a)	A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially at rest in its equilibrium position. If it is vibrating by giving to each of its end points a velocity $\lambda x(l-x)$, find the displacement of the string at any distance x from one end at any time t.	5	5	5	12
b)	Expand $f(x)$ in a Fourier series on the interval $-2 \le x < 2$ if $f(x) = 0$ for $-2 \le x < 0$ and $f(x) = 1$ for $0 \le x < 2$	3	4	5	5
16. a)	Prove that $\operatorname{curl} F = \operatorname{grad} \operatorname{div} F - \Delta^2 F$	4	1	1	10
b)	Verify the identity $A \cdot (B \times C) = B \cdot (C \times A)$ using tensor notation.	4	2	2	10
17.	Answer any <i>two</i> of the following:				
a)	Find the Eigen values and corresponding Eigen vectors of matrix	4	6	3	12
	$A = \begin{bmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 4 \end{bmatrix}$				
b)	Find $L^{-1}\left\{\frac{\frac{s}{2} + \frac{5}{3}}{s^2 + 5s + 6}\right\}$	4	3	4	5
c)	Given the non-orthogonal basis	4	2	5	10
	$a_1 = i - j - k$, $a_2 = i + j + k$, $a_3 = -i + 2k$, use the Gram-Schmidt orthogonalization process to find the orthonormal basis.				

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	58.75
2	Knowledge on application and analysis (Level-3 & 4)	30.00
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable)	11.25

কিককককক